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A new method for the stereoselective synthesis of the (R,R)-b-hydroxy-a-alkyl fatty acid fragment of
mycolic acids, via an asymmetric anti-aldol reaction is reported. The ‘mycolic acid motif’ fragment was
prepared in three steps and >98% ee.
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Scheme 1. Mycolic acid structure1,2 and retrosynthetic analysis.
Mycolic acids 1 (MAs) are located in the protective wax coat of
the cell wall of Mycobacterium tuberculosis and other mycobacte-
ria.1 MAs consist of two main parts, a mycolic acid motif with a
22 or 24 carbon a-alkyl chain and a b-hydroxy group, and a
mero-mycolate chain with variable functional groups.2 The myco-
lic acid motif, common to MAs from all mycobacteria, usually has
an R,R configuration.3 These complex waxes are recognized by anti-
bodies4 and therefore show potential for use in TB therapy and
new diagnostic techniques such as biosensor assays.5 Furthermore,
they have been shown to re-programme the macrophages to pro-
mote a telerogenic response in experimental asthma and are being
explored for their potential in the prevention and treatment of
asthma.6

Natural mycobacterial MAs are present as complex mixtures
containing different functionalities X and Y, and a range of homo-
logues with different chain lengths.1,2 To fully understand the bio-
logical role of MAs there is a need for the synthesis of individual
acids with known stereochemistry. In the biosynthesis of mycolic
acids, the a and b carbons are joined in a Claisen-type condensa-
tion to give a b-keto product which is selectively reduced.7 In pub-
lished syntheses of the mycolic acid motif, two stereocentres are
inserted consecutively in three to five steps.8,9 We now report a
more biomimetic approach (Scheme 1) whereby an auxiliary-med-
iated anti-aldol reaction gives the a-alkyl-b-hydroxy product 2 in
the required R,R configuration in one step. We have adapted the
ll rights reserved.
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r).
method developed by Kurosu and Lorca,10 to couple saturated car-
boxylic acids with short chain aldehydes for the synthesis of 2,
containing a terminal alkene. This can be used to extend the a-al-
kyl chain in the mycolic acid motif to its full length of 22 or 24 car-
bons as described by Toschi and Baird,9 and can be extended to the
full MA by reaction at the THPO-group.11

The norephedrine-based auxiliary 6 was attached to both the
required unsaturated acid 5a and a saturated acid 5b to give chiral
esters 3a and 3b (Scheme 2). The corresponding zirconium eno-
lates were prepared by treatment with LDA and transmetalation
with a zirconium complex (Cp2ZrCl2). Coupling of these enolates
to a variety of aldehydes 4a–d showed that chain length and func-
tionality in the aldehyde had little effect on the outcome of the
reaction, but the introduction of the terminal alkene in the enolate
led to lower yields (30–45% for 3a with 4a–d vs 50% for 3b with 4b/
d). Using freshly prepared LDA, strictly anhydrous conditions, a
constant temperature of �78 �C (monitored by an internal probe)
and dropwise addition of the reagents, the anti-aldol product 7a
was obtained from 3a and 4a on a 1 g scale in 45% yield with high
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Scheme 2. Synthesis of chiral esters 3a and 3b and subsequent anti-aldol reaction with various aldehydes. Reagents and conditions: (i) EDCI, DMAP, CH2Cl2 (3a = 89%,
3b = 91%); (ii) LDA, Cp2ZrCl2, THF, �78 �C; (iii) Na(s), MeOH (70%).
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Figure 1. MTPA ester of compound 2 (DdH values in ppm).

Table 1
Comparison of the 13C NMR alkene signals (in ppm) of diastereomers 2 with the
literature compound 811
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diastereoselectivity (>98%) (determined as described below) after
separation from the two syn-diastereomers by flash chromatogra-
phy.12 The chiral auxiliary was cleaved from aldol product 7a by
transesterification with sodium methoxide, rather than reduc-
tively,10 to yield the methyl ester 2 (70%) (Scheme 2). The configu-
ration of the hydroxy group in 2 was determined using Mosher’s
method, by conversion into the (R)- and (S)-MTPA esters.13 The
DdH values for the protons in the left and right segments (Fig. 1),
respectively, indicated an R configuration.

On standing in CDCl3 at room temperature for a week, the solu-
tion of 2 partly epimerized at the alpha position giving a mixture of
anti- and syn-diastereomers. A comparison of the 13C NMR data for
the two diastereomers with those published for mycolic acid motif
811 demonstrated that the relative stereochemistry of 2 was anti
(Table 1).

This synthesis of the mycolic acid motif methyl ester 2 repre-
sents a novel approach to a key intermediate that has been used
to prepare mycolic acids.11 The use of anti-aldol methodology re-
duces the number of steps required from six,11 to two. Prior to
the removal of the auxiliary, the diastereomeric products are read-
ily separated giving the desired R,R-product in >98% ee. The chiral
auxiliary can be recovered and recycled, increasing the atom econ-
omy of the process. By applying the method directly to the aldol
reaction of mero-mycolate aldehydes and long chain acids, it is
hoped that more efficient syntheses of a range of homologues of
natural mycolic acids can be achieved.
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